When Everett observes Greenberger, Horne, and Zeilinger meeting Wigner's friend

Vishal Johnson^{a,b,†}, Ashmeet Singh^c, Torsten Enßlin^{a,b}

a. MPA Garching, b. LMU Munich, c. Whitman College, †. vishal@mpa-garching.mpg.de

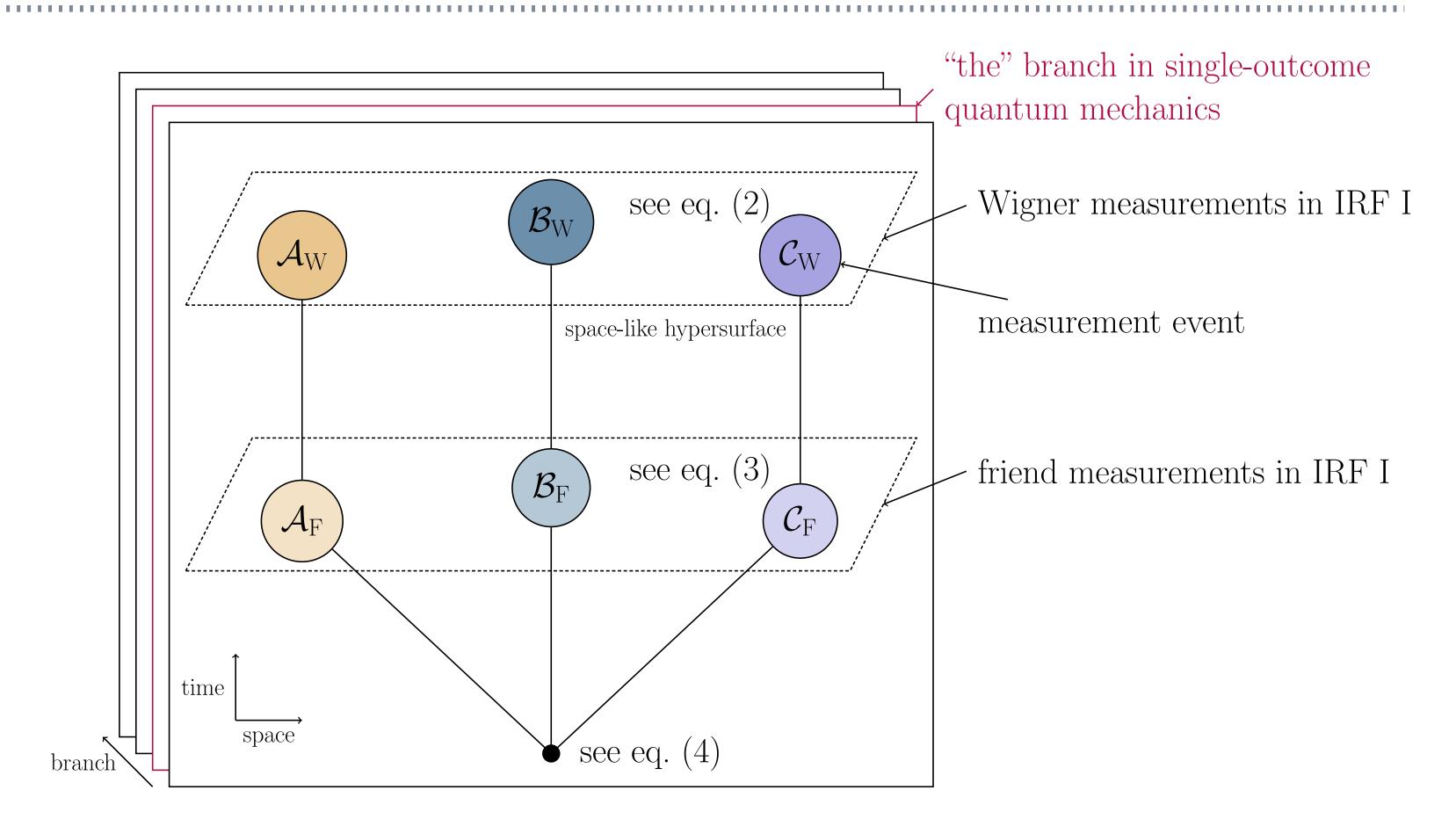
Abstract

Leegwater¹ raises a paradox where combining the GHZ paradox² with the Wigner's friend scenario³ reveals an inconsistency between single-outcome unitary quantum mechanics and relativity. We offer a positive solution within an Everettian perspective — there is no paradox and unitary quantum mechanics is consistent over different inertial reference frames.

Introduction

- GHZ paradox:²
- -qubit measurements in $\hat{x}\hat{x}\hat{x}$ basis inconsistent to $\hat{x}\hat{y}\hat{y}$ (or circular permutations),
- a resolution: these measurements cannot be simultaneously realised (counterfactual defense).
- Wigner's friend:³
- -friend measures qubit,
- -Wigner measures friend and their laboratory (feasibility might be questioned⁴),
- -varying interpretations as to when "collapse" occurs.
- Leegwater: 1 GHZ + Wigner's friend \rightarrow paradox (perspective of super-ontological observer).
- Proposal: many-worlds inspired local solution valid across inertial reference frames (perspective of super-ontological super-observer).

Perspective of super-ontological observer


- Experiments have single outcomes.
- GHZ + Wigner's friend \rightarrow paradox: $\hat{x}\hat{x}\hat{x}$ and $\hat{x}\hat{y}\hat{y}$... measurements take place in same reality but in different reference frames (counterfactual defense doesn't work).

Perspective of a super-ontological super-observer

- Reality consists of multiple branches and branch combination is a physical event.
- Wigners measure their friends (qubit and laboratory) in rotated basis:

$$|\pm\hat{x}\rangle_{\text{lo}_1} = \varphi|\mp\hat{y}\rangle_{\text{lo}_1} + \varphi^*|\pm\hat{y}\rangle_{\text{lo}_1} \quad (\varphi = \exp(i\pi/4)).$$
 (1)

Inertial Reference Frame (IRF) I

Solution: several ways of writing the GHZ state.

 $\hat{x}\hat{x}\hat{x}$ form (best description at distant future):

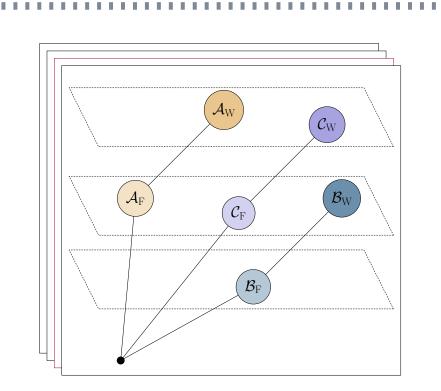
$$|+\hat{x}\rangle_{\text{ao}_{\text{aO}_{\text{ao}_{\text{a}}}}}|+\hat{x}\rangle_{\text{bo}_{\text{bO}_{\text{bo}_{\text{b}}}}}|+\hat{x}\rangle_{\text{co}_{\text{cO}_{\text{co}_{\text{c}}}}}+|+\hat{x}\rangle_{\text{ao}_{\text{aO}_{\text{ao}_{\text{a}}}}}|-\hat{x}\rangle_{\text{bo}_{\text{bO}_{\text{bo}_{\text{b}}}}}|-\hat{x}\rangle_{\text{co}_{\text{cO}_{\text{co}_{\text{c}}}}}+|-\hat{x}\rangle_{\text{ao}_{\text{aO}_{\text{ao}_{\text{a}}}}}|+\hat{x}\rangle_{\text{bo}_{\text{bO}_{\text{bo}_{\text{b}}}}}|-\hat{x}\rangle_{\text{co}_{\text{cO}_{\text{co}_{\text{c}}}}}+|-\hat{x}\rangle_{\text{ao}_{\text{aO}_{\text{ao}_{\text{a}}}}}|-\hat{x}\rangle_{\text{bo}_{\text{bO}_{\text{bo}_{\text{b}}}}}|+\hat{x}\rangle_{\text{co}_{\text{cO}_{\text{co}_{\text{c}}}}}. (2)$$

 $\hat{y}\hat{y}\hat{y}$ form (best description after friend measurement in IRF I):

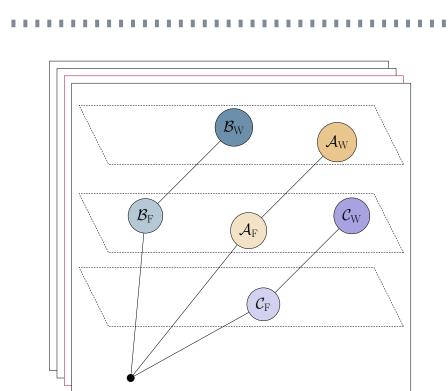
$$\varphi|+\hat{y}\rangle_{\text{ao}_{a}}|+\hat{y}\rangle_{\text{bo}_{b}}|+\hat{y}\rangle_{\text{co}_{c}}+\varphi^{*}|-\hat{y}\rangle_{\text{ao}_{a}}|+\hat{y}\rangle_{\text{bo}_{b}}|+\hat{y}\rangle_{\text{co}_{c}} +\varphi|-\hat{y}\rangle_{\text{ao}_{a}}|-\hat{y}\rangle_{\text{bo}_{b}}|+\hat{y}\rangle_{\text{co}_{c}}+\varphi^{*}|+\hat{y}\rangle_{\text{ao}_{a}}|-\hat{y}\rangle_{\text{bo}_{b}}|+\hat{y}\rangle_{\text{co}_{c}} +\varphi|-\hat{y}\rangle_{\text{ao}_{a}}|+\hat{y}\rangle_{\text{bo}_{b}}|-\hat{y}\rangle_{\text{co}_{c}}+\varphi^{*}|+\hat{y}\rangle_{\text{ao}_{a}}|+\hat{y}\rangle_{\text{bo}_{b}}|-\hat{y}\rangle_{\text{co}_{c}} +\varphi|+\hat{y}\rangle_{\text{ao}_{a}}|-\hat{y}\rangle_{\text{bo}_{b}}|-\hat{y}\rangle_{\text{co}_{c}}+\varphi^{*}|-\hat{y}\rangle_{\text{ao}_{a}}|-\hat{y}\rangle_{\text{bo}_{b}}|-\hat{y}\rangle_{\text{co}_{c}}. (3)$$


 $\hat{z}\hat{z}\hat{z}$ form (best description at origin):

$$|+\hat{z}\rangle_{\mathbf{a}}|+\hat{z}\rangle_{\mathbf{b}}|+\hat{z}\rangle_{\mathbf{c}}+|-\hat{z}\rangle_{\mathbf{a}}|-\hat{z}\rangle_{\mathbf{b}}|-\hat{z}\rangle_{\mathbf{c}}.$$
 (4)


 $\hat{x}\hat{y}\hat{y}$ form (best description after friend measurement in IRF IIs):

$$|-\hat{x}\rangle_{\text{ao}_{\text{ao}_{\text{ao}_{\text{a}}}}}|+\hat{y}\rangle_{\text{bo}_{\text{b}}}|+\hat{y}\rangle_{\text{co}_{\text{c}}} + |+\hat{x}\rangle_{\text{ao}_{\text{a}}\text{o}_{\text{ao}_{\text{a}}}}|-\hat{y}\rangle_{\text{bo}_{\text{b}}}|+\hat{y}\rangle_{\text{co}_{\text{c}}} + |+\hat{x}\rangle_{\text{ao}_{\text{a}}\text{o}_{\text{ao}_{\text{a}}}}|+\hat{y}\rangle_{\text{bo}_{\text{b}}}|-\hat{y}\rangle_{\text{co}_{\text{c}}} + |-\hat{x}\rangle_{\text{ao}_{\text{a}}\text{o}_{\text{ao}_{\text{a}}}}|-\hat{y}\rangle_{\text{bo}_{\text{b}}}|-\hat{y}\rangle_{\text{co}_{\text{c}}}. (5)$$


Inertial Reference Frame IIa

IRF IIb

IRF IIc

Glossary

- Super-ontological observer: outside ontology, single branch.
- Super-ontological super-observer: outside ontology, multiple branches
- | \rangle_l : state of qubit l; | \rangle_{o_l} : state of (friend level) observer o_l for qubit l; | $\rangle_{o_{lo_l}}$: state of (Wigner level) observer o_{lo_l} for qubit and laboratory lo_l .
- Branch combination: observer measuring a superposition of two branches for example, if observer o_{lo_l} measured the system lo_l in eq. (1) in the rotated basis.
- ullet Events \mathcal{X}_F refer to mesoscopic measurements by friend systems; \mathcal{X}_W refer to macroscopic measurements by Wigner systems.

Super-ontological super-observer in IRF I

1. Friend measurements:

- (a) a, b, and c (in GHZ state) reach events \mathcal{A}_{F} , \mathcal{B}_{F} , and \mathcal{C}_{F} ,
- (b) and are observed by o_a , o_b , and o_c respectively in \hat{y} basis.
- 2. Wigner measurements:
- (a) observers o_{ao_a} , o_{bo_b} , and o_{co_c} observe qubit-laboratory systems ao_a , bo_b , and co_c
- (b) at events \mathcal{A}_{W} , \mathcal{B}_{W} , and \mathcal{C}_{W} , respectively, in the \hat{x} basis (eq. (1)).

Super-ontological super-observer in IRF IIa

Sequence of events:

- 1. observer o_a observes qubit a in the \hat{y} basis at event \mathcal{A}_F ,
- 2. events \mathcal{A}_W , \mathcal{B}_F , and \mathcal{C}_F take place simultaneously where the observers o_{ao_a} , o_b , and o_c measure in the \hat{x} , \hat{y} , and \hat{y} basis, respectively,
- 3. observers o_{bo_b} and o_{co_c} measure qubit-laboratory systems bo_b , and co_c in the \hat{x} basis at events \mathcal{B}_W and \mathcal{C}_W respectively.

Similarly for IRFs IIb and IIc.

Bibliography

- [1] Gijs Leegwater. "When Greenberger, Horne and Zeilinger Meet Wigner's Friend". In: Found. Phys. 52.4 (Aug. 2022), pp. 1–17. ISSN: 1572-9516. DOI: 10.1007/s10701-022-00586-6.
- [2] Daniel M. Greenberger et al. "Bell's theorem without inequalities". In: Am. J. Phys. 58.12 (Dec. 1990), pp. 1131–1143. ISSN: 0002-9505. DOI: 10.1119/1.16243.
- [3] E. P. Wigner. "Remarks on the Mind-Body Question". In: *Philosophical Reflections and Syntheses*. Berlin, Germany: Springer, 1995, pp. 247–260. ISBN: 978-3-642-78374-6. DOI: 10.1007/978-3-642-78374-6_20.
- [4] Marek Żukowski and Marcin Markiewicz. "Physics and Metaphysics of Wigner's Friends: Even Performed Premeasurements Have No Results". In: Phys. Rev. Lett. 126.13 (Apr. 2021), p. 130402. ISSN: 1079-7114. DOI: 10.1103/PhysRevLett.126.130402.